
12 CrossTalk—Nov/Dec 2010

Architecture today

Time frames for new feature releases continue to shorten,
as exemplified by Z. Lemnios, Director of Defense Research
and Engineering:

“Get me an 80% solution NOW rather than a 100% solu-
tion two years from now and help me innovate in the field” [1].

To meet these demands, government and government
contractors are now looking closely into the adoption of agile
practices [2] [3].

End users demand Enhancement Agility, the ability to keep
adjusting the product to emerging needs through the addition
of new features. Existing approaches to achieving Enhance-
ment Agility vary, depending upon the lifecycle under which
the product or system is being developed.

Under the Waterfall paradigm of software development,
an extensive requirements phase is conducted to anticipate
needs for both the initial and subsequent releases of the
product or system being developed. Following the require-

Nanette Brown, Robert Nord, Ipek Ozkaya
Software Engineering Institute, Carnegie Mellon University

Abstract: Industry and government stakeholders continue to demand
increasingly rapid innovation and the ability to adjust products and
systems to emerging needs. Amongst all the enthusiasm for using
Agile practices to meet these needs, the critical role of the underlying
architecture is often overlooked.

ments phase, an architecture phase is conducted to develop
a comprehensive underlying technical infrastructure. Within
the Waterfall model, once the architecture is implemented,
Enhancement Agility can be achieved, provided that the emer-
gent user needs fit within the boundaries anticipated during
the requirements phase.

However, taking the Waterfall approach presents two poten-
tial problems. First, when working in a new, unknown emergent
problem space, building an architectural platform that reliably
anticipates all future needs is an extremely difficult undertak-
ing. Secondly, under the Waterfall paradigm, considerable effort
and expense is incurred before any actual value is achieved
(i.e., before any features are delivered to the user).

In contrast to Waterfall methodologies, Agile software
development methods focus on delivering observable benefits
to the end users through working software, early and often. A
backlog of functional “user stories” is created. These stories
are prioritized by end users and/or the product owner, acting
as the user advocate. Development teams draw stories from
the backlog and implement them in accordance with an end-
user prioritization scheme. The Agile community’s focus on
continuous delivery of user-valued stories is another means of
achieving Enhancement Agility. However, this approach also
has its shortfalls, stemming mainly from an inadequate focus
on dependency analysis.

Individual stories cannot be regarded in isolation. Stories
have dependencies on other stories. In Software by Numbers,
Denne and Cleland-Huang use the term “greedy algorithm”
to refer to a prioritization scheme which focuses strictly on
implementing the story with the highest immediate value [4].
They point out that, at times, higher-value stories may depend
upon (i.e., require prior implementation of) lower value stories.
Thus, truly optimizing value to the user requires teams to look
ahead and anticipate future needs.

Similarly, stories have dependencies upon the architectural
elements of the system. These dependencies exist regardless
of domain stability or technical maturity. They exist regardless
of whether the system is in its initial development stages or
has been deployed and has been in the field for several years.
The ability to identify and analyze architectural dependencies
and incorporate dependency awareness into a responsive
development model exemplifies the notion of Architectural
Agility. It is our thesis that without Architectural Agility, En-
hancement Agility cannot be reliably sustained.

Architectural Agility and Release Planning
Architectural Agility addresses shortcomings that oc-

cur within both the Waterfall and the Agile lifecycle models.
Architectural Agility allows architectural development to follow
a “just-in-time” model. Delivery of customer-facing features
is not delayed pending the completion of exhaustive require-
ments and design activities and reviews. At the same time,
Architectural Agility maintains a steady and consistent focus
on continuing architectural evolution in support of emerging
customer-facing features. It avoids the pitfalls of a myopic
focus on user stories, which over time can lead to increased
complexity and “tortured” implementation choices as develop-

Enabling Agility
Through
Architecture

CrossTalk—Nov/Dec 2010 13

ARCHITECTURE TODAY

ers seek to incorporate features that the architecture was
not designed to support. Proceeding under the latter para-
digm leads to the all-too-familiar situation in which features
gradually take longer and longer to implement, the code
becomes more and more buggy, and eventually management
is informed that the system must be scrapped and rewritten
“from scratch.”

Our mantra for Architectural Agility is “informed anticipa-
tion.” The architecture should not over-anticipate emergent
needs, delaying delivery of user value and risking develop-
ment of overly complex and unneeded architectural con-
structs. At the same time, it should not under-anticipate future
needs, risking feature development in the absence of archi-
tectural guidance and support. Architectural Agility requires
“just enough” anticipation. To achieve the quality of being
“just enough,” architectural anticipation must be “informed.”
Dependency analysis, real options analysis and technical debt
management are the tools through which “informed anticipa-
tion” can be achieved. The remainder of this article will illus-
trate the application of these techniques through the practice
of release planning.

Figure 1 shows a release planning board that represents
the typical heuristics used within the Agile community for
release planning. Desired stakeholder capabilities are repre-
sented as “user stories.” These user stories are allocated to
iterations in order of their priority to the end user.

Figure 2 shows an enhanced release planning board that
incorporates planning for development of the underlying
software architecture. In addition to selecting stories to be
developed within each iteration, the team identifies the archi-
tectural elements that must be implemented to support them.
This version of the release planning board also incorporates
a “technical research” activity, recognizing that architectural
development frequently requires investigation and analysis of
alternate approaches. Finally, the term “capabilities” has been
used in place of “user stories,” reflecting a need to consider
non-functional, quality attribute requirements, as well as the
need to incorporate requirements across a broad range of
stakeholders.

As an example, consider the Apps for the Army initiative [5].
The ability to add new and innovative apps quickly and easily
exemplifies the concept of Enhancement Agility. However,
Architectural Agility is required to supply the underlying
technical infrastructure to support the app-based develop-
ment model. The app-based development model includes a
developer framework and run-time infrastructure that are part
of the notion of an app store.

A conceptual architecture for an app store is illustrated in
Figure 3. This conceptual architecture describes the essential
high-level architectural elements such as content manage-
ment, service management, data access, security and a range
of external target devices that can access/manipulate the
apps. Using an agile approach of starting small and growing
the system, the team selects capabilities that support a small
number of predetermined apps in the early iterations. This
requires identifying those architectural elements within the
business logic, data access, and service management com-

User Stories

Iteration 3Iteration 2Iteration 1

User Stories

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Figure 1: Agile iteration planning – focus on User Stories

Figure 2: Architectural elements in agile iteration planning

http://www.navair.navy.mil

14 CrossTalk—Nov/Dec 2010

Architecture today

ponents that support these capabilities. In later iterations, the
team expects to focus on scaling the system in the number
of apps and users, enhancing security, and allowing users to
contribute their own apps. Architectural elements within the
security, content management, and publishing components
need to be scrutinized to see which are needed to support
these additional capabilities.

Implementing this type of planning heuristic requires the
ability to do dynamic dependency management in a manner
that is both rigorous and responsive. Dependencies between
capabilities and architectural elements need to be identified
for each iteration in order to prioritize and schedule work
within a release.

Content
warehouse

Self publishing

UI components
(Branded application, localization, target device(s))

Service interface

Data access
logic

Service
agents

Business Logic

Store
admininstration

Catalog
management

Order
management

Data
collection

S
ecurity

Services/apps databaseAccount database

Users

System component

Component relationship

Database

External user environment

Re
po

rt
in

g

A
pp

 c
at

al
og

 m
an

ag
em

en
t

Sa
le

s
m

an
ag

em
en

t

U
pg

ra
de

 m
an

ag
em

en
t

Pr
om

ot
io

n
m

an
ag

em
en

t

O
rd

er
 m

an
ag

em
en

t

A
cc

ou
nt

 m
an

ag
em

en
t

Reporting x x x x x x 6
App catalog management x x x x x x 6
Sales management x x x x 4
Upgrade management x 1
Promotion management x x x x x 5
Order management x 1
Account management x 1
UI components x x x x x x x 7
Service interface x x x x x x x 7
Content warehouse x x x 3
Self publishing x x x 3
Account database x x x x 4
Services/apps database x x 2
Data access logic x x x 3
Service agents x x x x x 5
Security x x x x x x 6
Order management x x x 3
Data collection x x 2
Store administration x x x x x x x 7
Catalog management x x x 3

9 11 4 9 5 8 9

Ca
pa

bi
lit

ie
s

A
rc

hi
te

ct
ur

al
 e

le
m

en
ts

Architecture Dependency Management
Dependency management has been studied extensively at

the level of code artifacts. Applying dependency management
at the architecture level is beginning to show promising re-
sults due to increasingly effective tool support. These metrics
can be extracted from the architecture, represented in the
form of a Dependency Structure Matrix (DSM). The DSM is
a compact representation which lists all constituent subsys-
tems/activities and the corresponding information exchange
and dependency patterns. Domain Mapping Matrices (DMMs)
augment DSM analyses and can be used to represent the de-
pendencies between capabilities and architectural elements.

Returning to the example, dependency analysis for the
app store must consider dependencies between capabilities

Figure 3: Conceptual App Store Architecture and High-Level Capability Dependencies

CrossTalk—Nov/Dec 2010 15

ARCHITECTURE TODAY

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Capabilities

Architectural
Elements &
Technical
Research

Iteration 3Iteration 2Iteration 1

Fulfill Current Release Prepare for Future Release

nancial options theory to quantify the value of flexibility in real
assets and business decisions to determine the value of such
delayed decision making. And both common sense and the
theory demonstrate that the higher the uncertainty, the more
it makes sense to wait to act and defer the decisions. From
this perspective, the agile community has used the concept of
real options in separating concerns that have immediacy and
those that can possibly wait.

In agile release planning, real options analysis is a way to
look at the allocation of architectural elements to releases
based on their dependencies from the perspective of future
value [7]. In architecture terms, taking an option could be
applying an architecture pattern, providing a well-structured
modular design that supports Enhancement Agility. Real
options analysis can be informed and complemented by a
consideration of technical debt.

The technical debt metaphor [8] highlights that doing
things the quick and dirty way for short-term benefit sets us
up with a technical debt. Like a financial debt, the technical
debt incurs interest payments, which come in the form of the
extra effort that we have to do in future development because
of suboptimal design choices. We can choose to continue
paying the interest, or we can pay down the principal by
refactoring and improving the design. Although it costs to pay
down the principal, we gain by reduced interest payments in
the future.

Agile development methods aim to manage technical debt
through refactoring practices. Refactoring is restructuring an
existing body of code, altering its internal structure without
changing its external behavior. However, when significant
architectural change is needed, such small, local refactoring
efforts cannot compensate for the lack of an architecture
that is necessary to guide the architect in achieving the goals
of the system. In this case, lack of Architecture Agility starts
compromising Enhancement Agility.

Figure 4: Informed anticipation in the context of agile release planning

as well as dependencies between architectural elements
and capabilities. These dependencies are identified in the
matrix in Figure 3. The capabilities portion of this matrix is an
example of a DSM. An X mark indicates that the capability in
the row provides information to the capability in the column.
Reading across the row labeled “App catalog management,” it
is clear that all other capabilities depend on it. The architec-
tural elements portion of the matrix is an example of a DMM.
A marked cell indicates that the architectural element in the
row implements an aspect of the capability represented in the
column. Reading down the column labeled “App catalog man-
agement,” it becomes clear that the App catalog management
capability depends on almost all of the architectural elements.
Having this kind of view can be essential in focusing the
iterations within releases.

Metrics associated with dependency also provide data for
inferring the likely costs of change propagation, especially
when dependencies between architectural elements are also
considered (not shown in Figure 3). One such example is
discussed in Carriere et al where the value of re-architecting
decisions needed to be understood to determine if the ex-
pense to implement them was justified [6].

Architecture Heuristics Focused on Value: Real
Options Analysis and Technical Debt Management

For effective Architectural Agility, dependencies between
capabilities and architectural elements need to be identified
not only to fulfill the current release, but to plan for future
releases as well (Figure 4). Informed anticipation requires
incorporating architecture heuristics focused on value into
the planning model. Real options analysis and technical debt
management offer potential models to make an informed
choice and find the right balance of agility, innovation, and
speed on the one hand, and governance, flexibility, and plan-
ning for future needs on the other.

This additional set of considerations adds a new dimen-
sion to the release planning board. This added dimension
allows the identification of architectural constructs that, while
not required for the current release, should potentially be
incorporated into the current release in anticipation of future
stakeholder goals.

As an example, the initial number of deployed apps is ex-
pected to be small, so capabilities such as scalability could be
deferred and assigned to a future release. However, it is also
true that by setting up an app store scalability infrastructure—
that is, buying the option of scaling up—you can reduce your
technical debt down the road. By choosing to take a short-
cut—not buying the option—you incur possible technical debt.

The question of how to optimally allocate architectural ele-
ments that deal with scalability to releases can benefit from
applying real options analysis. Real options analysis is a finan-
cial analysis model to help determine whether some upfront
cost should be spent (buying the option) to have the right, but
not the obligation, to take an action in the future (exercising
the option). The real options analysis method applies the fi-

16 CrossTalk—Nov/Dec 2010

Architecture today

Informed Anticipation Guiding Agile Release Planning
Unifying the concepts of technical debt, real options, and

uncertainty management is a common focus on the ques-
tion “Should I take a certain action today in anticipation of
increased benefit and reduced cost in the future?” Taking
the correct action today provides an option which can be
acted upon in the future. This is where the agile mindset and
architecture reasoning tend to diverge. Agile projects focus
on stories that are needed in the current release and rely on
code-level refactoring to incorporate future stories. However,
relying only on code-level refactoring often does not suffice,
especially in large-scale development.

Spending some time architecting can provide better options
in many large-scale development contexts that struggle with
applying agile techniques. The cost and benefit tradeoff is
often misrepresented as a choice between “do nothing” and
“spend a lot of time on something you may not need.” The
concrete benefit of having real options requires the tradeoff
to be made between “do nothing, possibly suffer a lot later”
and “do just a little, suffer less later.”

Identifying architectural elements that enable future stake-
holder goals requires mapping options to releases across the
lifespan of the system. A real option often requires some por-
tion of the system to be developed today to enable future de-
velopment at ease. Understanding which release that option
needs to be allocated to and how its cost will be paid during
that release are key to success. The release planning board
provides a visual means to monitor such elements throughout
the releases. Although lower in cost, options are not without
expense, so there should not be too many. But cost is not the
only issue, so a large-scale project without any options should
be viewed with a critical eye. Ideally, the decision to develop
an option should be justified by the desire to mitigate the risk
of an uncertain future.

Identifying dependencies within a given release also
requires understanding the deliberate shortcuts taken to
achieve the high-priority functionality. These shortcuts (tech-
nical debt) need to be revisited at each iteration. Monitor-
ing these decisions is the first step to realizing the good
enough, but cost effective solution today without endanger-
ing the needed full solution tomorrow. Once identified, the
decision can be made at appropriate times to emphasize
more architecting and paying off the debt as opposed to
adding new features.

Looking back at the conceptual architecture shown in
Figure 3, even at this level, several decisions can be made
by taking advantage of dependency analysis in relationship
to real options and technical debt concepts. The App catalog
management capability describes the feature allowing users
to author and add apps to the app store. The matrix shows
that the Self-publishing component has a role in implement-
ing this feature. Depending on the cost and value of early
delivery versus the level of control, two approaches are
available. In a quick delivery approach, rather than implement
the full functionality in a separate Self-publishing component,
initially a subset could be implemented in the Store admin-

istration component that has been selected for implemen-
tation in an early release for other reasons. Administrator
users have full access to this component through the Sales
management capability. This approach would depend on the
administrator to ensure that only authorized and well-behaved
apps are published, but since this approach limits exposure
of the infrastructure and is simpler to implement, it could be
deployed quicker. In conjunction with this approach, preparing
for the future release and creating the infrastructure for self
publishing can be an option for future investment. When the
time comes, the infrastructure could be self enabled, increas-
ing the innovation of apps by allowing users to submit their
own without external controls.

Technical debt is most often associated at the level of
detailed design and code artifacts and tool support is begin-
ning to show promise [9]. An analog for monitoring and
managing technical debt in the architecture would provide
analyses earlier in the development cycle for keeping the
project on track. Some of these measures exist and can be
used today. For example, Hinsman from L.L. Bean [10] used
a tool to analyze and monitor architecture violations based
on dependency analysis in an ongoing effort to evolve and
improve its architecture. Once the architecture was restruc-
tured, the process was modified to support agility through
keeping the architectural elements visible so that they could
be explicitly managed.

Key Take-Aways
A focus on architecture is not in opposition to Agile values

and principles. In fact, ongoing sustainable achievement of
Enhancement Agility is only possible when coupled with
Architectural Agility. To achieve Architectural Agility, the Agile
community must first expand its focus on end user stories
and address the broader topic of capabilities, including quality
attribute requirements and a diverse range of stakeholders.
The use of dependency analysis practices can be used to
facilitate a “just-in-time” approach to building out the architec-
tural infrastructure. Real options and technical debt heuristics
can be used to optimize architectural investment decisions
by analyzing uncertainty and tradeoffs between incurred cost
and anticipated value.

DISCLAIMER

Copyright 2010 by Carnegie Mellon University (and co-owner).

NO WARRANTY

This Carnegie Mellon University and software engineering institute material is furnished on an “as-is”
basis. Carnegie Mellon University makes no warranties of any kind, either expressed or implied, as to
any matter including, but not limited to, warranty of fitness for purpose or merchantability, exclusivity,
or results obtained from use of the material. Carnegie Mellon University does not make any warranty
of any kind with respect to freedom from patent, trademark, or copyright infringement.

This work was created in the performance of Federal Government Contract Number FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part
and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

CrossTalk—Nov/Dec 2010 17

ARCHITECTURE TODAY

1.	 Lemnios, Z. (2010) Statement of Testimony Before the United States House
	 of Representatives Committee on Armed Services Subcommittee on Terrorism,
	 Unconventional Threats and Capabilities, March 23, 2010. [cited on June 11,
	 2010] URL: <http://www.dod.mil/ddre/Mar232010Lemnios.pdf>
2.	 Cohan, Sean (2007) Successful Integration of Agile Development Techniques
	 within DISA, AGILE 2007.
3.	 Crowe, P, Cloutier, R. (2009) “Evolutionary Capabilities Developed and Fielded 	
	 in Nine Months,” CrossTalk, May 2009. URL:
	 <http://www.stsc.hill.af.mil/crosstalk/2009/05/0905CroweCloutier.html>
4.	 Denne, M., & Cleland-Huang, J. Software by Numbers: Low-Risk, High-Return
	 Development. Upper Saddle River, N.J.: Prentice Hall. 2004.
5.	 CIO/G-6 Public Affairs. G-6 launches ‘Apps for the Army’ challenge. [cited
	 on June 11, 2010] URL: <http://www.army.mil/-news/2010/03/01/35148-g-6-
	 launches-apps-for-the-army-challenge/>
6.	 Carriere, J. Kazman, R., Ozkaya, I. “A Cost-Benefit Framework for Making
	 Architectural Decisions in a Business Context” in Proceedings of the 32nd 		
	 International Conference on Software Engineering, Vol 2, pp:149-157, 2010
7.	 Bahsoon, R., Emmerich, W., Macke, J. “Using Real Options to Select Stable
	 Middleware-Induced Software Architectures.” IEE Proceedings Software - Special
	 issue on relating software requirements to architectures 152(4) (2005) ISSN
	 1462-5970, pp. 153-167, IEE press.
8.	 Fowler, M. Technical Debt Quadrant. Bliki [Blog] 2009 [cited on June 14,
	 2010]; URL: <http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html>
9.	 Gaudin, O. Evaluate your technical debt with sonar, [cited on June 11, 2010]
	 URL: <http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar>
10.	Hinsman C., Sangal, N., Stafford, J. Achieving Agility Through Architecture
	 Visibility, in LNCS 5581/2009, Architectures for Adaptive Software Systems,
	 2009 pp.116-129

The authors work in the Research, Technology, and System
Solutions Program at the Software Engineering Institute and
are currently engaged in a research project on “Communi-
cating the Value of Architecting within Agile Development.”

Nanette Brown is a Visiting Scientist and is a Principal
Consultant with NoteWell Consulting. She is engaged in ac-
tivities focusing on architecture within an Agile context. Pre-
viously, Nanette worked at Pitney Bowes Inc., most recently
as Director of Architecture and Quality Management, where
she was responsible for design and implementation of a
customized SDLC that blended RUP and Agile practices.

Robert L. Nord is a senior member of the technical staff
and works to develop and communicate effective methods
and practices for software architecture. He is co-author of
the practitioner oriented books, Applied Software Archi-
tecture and Documenting Software Architectures: Views
and Beyond, published by Addison-Wesley and lectures on
architecture-centric approaches.

Ipek Ozkaya is a senior member of the technical staff. Her
primary work is on developing techniques and methods for
improving software architecture practices by focusing on
software economics and requirements management. Cur-
rently, she serves as the technical lead of the agile develop-
ment and software architecture independent research work,
in addition to leading work in architecture-based system
evolution. In addition she contributes to teaching of several
courses in the Software Architecture Certificate Program
at the SEI.

Contact Information

Nanette Brown
nb@sei.cmu.edu

Robert L. Nord
rn@sei.cmu.edu

Ipek Ozkaya
ozkaya@sei.cmu.edu

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue
Pittsburgh, PA 15213-3890
Tel: +1 (412) 268-7700
Fax: +1 (412) 268-5758
URL: http://www.sei.cmu.edu/architecture/

ABOUT THE AUTHORS REFERENCES

http://www.dod.mil/ddre/Mar232010Lemnios.pdf
http://www.stsc.hill.af.mil/crosstalk/2009/05/0905CroweCloutier.html
http://www.army.mil/-news/2010/03/01/35148-g-6-launches-apps-for-the-army-challenge/
http://www.army.mil/-news/2010/03/01/35148-g-6-launches-apps-for-the-army-challenge/
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar
mailto:nb@sei.cmu.edu
mailto:rn@sei.cmu.edu
mailto:ozkaya@sei.cmu.edu
http://www.sei.cmu.edu/architecture/

