
Our mission is to help our customers achieve first-class project results
by delivering tools and services focused on assessing, monitoring
and improving the architecture and technical quality of their
software systems in the development and maintenance phases. We
believe that these two aspects are the most critical factors in
determining the success of medium- and large-scale projects.

www.hello2morrow.com

SOFTWARE ARCHITECTURE MANAGEMENT

OPTIMIZATION OF DEVELOPER PRODUCTIVITY

MONITORING AND ASSESSING SOFTWARE QUALITY

SOFTWARE RISK ASSESSMENT AND TRANSPARENCY

http://www.hello2morrow.com/

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#130
D

e
si

g
n

in
g

 Q
u

al
it

y
S

o
ft

w
ar

e

By Alexander von Zitzewitz

CONTENTS INCLUDE:
n	 Abstract
n	 Structural Erosion
n	 Large-Scale System Design
n	 Design Rules
n	 Programming Rules
n	 Hot Tips and more...

Designing Quality Software
Architectural and Technical Best Practices

ABSTRACT

STRUCTURAL EROSION

All software projects start with great hope and ambition.
Architects and developers are committed to creating an
elegant and efficient piece of software that is easy to
maintain and fun to work on. Usually, they have a vital image
of the intended design in their mind. As the code base
gets larger, however, things start to change. The software is
increasingly harder to test, understand, maintain and extend.
In Robert C. Martin’s terms, “The software starts to rot like a
piece of bad meat”.

This phenomenon is called “Structural Erosion” or
“Accumulation of Structural Debt”, and it happens in almost
every non-trivial software project. Usually, the erosion
begins with minor deviations from the intended design due
to changes in requirements, time pressure or just simple
negligence. In the early stages of a project, this is not a
problem; but during the later stages, the structural debt grows
much faster than the code base. As a result of this process, it
becomes much harder to apply changes to the system without
breaking something. Productivity is decreasing significantly
and the cost of change grows continuously up to a point
where it becomes unbearable.

Robert C. Martin described a couple of well-known symptoms
that can help you to figure out whether or not your application
is affected by structural erosion:

 • �Rigidity: the system is hard to change because every change forces
many other changes.

 • �Fragility: changes cause the system to break in conceptually
unrelated places.

 • �Immobility: it’s hard to disentangle the system into reusable
components.

 • �Viscosity: doing things correctly is harder than doing things incorrectly.

 • �Opacity: the code is hard to read and understand. It does not express
its intent well.

www.hello2morrow.com/products/sonarj

« I was amazed to see how quick and easy
we were able to adopt SonarJ for managing
the architecture and technical quality of the
Spring Framework family. »

Jürgen Höller
VP & Distinguished Engineer
Springsource

brought to you by...

The technical quality of software can be defined as the level of
conformance of a software system to a set a set of rules and
guidelines derived from common sense and best practices.
Those rules should cover software architecture (dependency
structure), programming in general, testing and coding style.

Technical quality is fundamentally manifested in the source
code. People say: “The truth can only be found in the source
code”. Therefore it is important that achieving a satisfactory level
of technical quality is an explicit goal and integral part of the
development process. To avoid a steady decrease of technical
quality during development it is required to measure it on a
regular base (at least daily). By doing that it is possible to detect
and address undesirable rule violations early in the process. The
later rule violations are detected the more difficult and expensive
it is to fix them. Since testing is only one of several aspects of
technical quality management it is not possible to achieve an
acceptable level of technical quality by testing only.

The document begins with a description of the biggest enemy
of technical quality, which is the structural erosion of software.
The best way to fight structural erosion is to keep the
large-scale structure of a software system in good shape.
Therefore the biggest part of this document focuses on
large-scale system design, which also has big implications
for application security aspects. Parts of this section are very
technical. The intention is to support architects and developers
in solving typical day-to-day issues that can negatively impact
technical quality and software structure. The last part contains
a compact set of rules derived from experience and real-world
projects. Implementing and enforcing these rules will help you
to achieve a good level of technical quality and maintainability
while optimizing the productivity of your development team.

The intended audiences are software architects, developers,
quality managers and other technical stakeholders. Although
the major part of the document is programming language
agnostic, the rule set at the end works best with statically typed
object-oriented languages like Java, C# or C++.

Package cycle groups are a typical symptom of structural erosion

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.hello2morrow.com/products/sonarj

3 Designing Quality Software: Architectural and Technical Best Practices

DZone, Inc. | www.dzone.com

	

Case 1 shows a cyclic dependency between units A, B and C.
Hence, it is not possible to assign level numbers to the units,
leading to the following undesirable consequences:

 • �Understanding the functionality behind a unit is only possible by
understanding all units.

 • The test of a single unit implies the test of all units.

 • �Reuse is limited to only one alternative: to reuse all units. This kind of
tight coupling is one of the reasons why reuse of software components
is hardly ever practiced.

 • �Fixing an error in one unit involves automatically the whole group of the
three units.

 • An impact analysis of planned changes is difficult.

Case 2 represents three units forming an acyclic directed
dependency graph. It is now possible to assign level numbers.
The following effects are the consequences:

 • �A clear understanding of the units is achieved by having a clear order,
first A, then B and then C.

 • �A clear testing order is obvious: first test unit A; test continues with B
and afterwards with C.

 • �In matter of reuse, it is possible to reuse A isolated, A and B, or also the
complete solution.

 • �To fix a problem in unit A, it can be tested in isolation, whereby the test
verifies that the error is actually repaired. For testing unit B, only units B
and A are needed. Subsequently, real integration tests can be done.

 • An impact analysis can easily be done.

Please keep in mind that this is a very simple example.
Many software systems have hundreds of units. The more
units you have, the more important it becomes to be able
to levelize the dependency graph. Otherwise, maintenance
becomes a nightmare.

Here is what recognized software architecture experts say
about dependency management:

“It is the dependency architecture that is degrading, and with it
the ability of the software to be maintained.” [ASD]

“The dependencies between packages must not form cycles.” [ASD]

“Guideline: No Cycles between Packages. If a group of packages have cyclic
dependencies then they may need to be treated as one larger package in terms
of a release unit. This is undesirable because releasing larger packages (or
package aggregates) increases the likelihood of affecting something.” [AUP]

“Cyclic physical dependencies among components inhibit understanding,
testing and reuse.” [LSD]

Hot
Tip

	
 Graph 1 (CCD=23) 	
 Graph 2 (CCD=19)

Above, you see two dependency graphs. The numbers
inside of the components reflect the number of components
reachable from the given component (including itself). The
value is called Component Dependency (CD). If you add up all
the numbers in the Graph 1 the sum is 23. This value is called
“Cumulative Component Dependency” (CCD). If you divide
CCD by the number of components in the graph, you get
ACD. For Graph 1, this value would be 3.29.

Please note that Graph 1 contains a cyclic dependency.
In Graph 2, removing the dependency shown in red has broken
the cycle, which reduces the CCD to 19 and ACD to 2.71. As
you can see, breaking cycles definitely helps to achieve our
second goal, which is the overall reduction of coupling.

NCCD is calculated by dividing the CCD value of a
dependency graph through the CCD value of a balanced
binary tree with the same number of nodes. Its advantage
over ACD is that the metric value does not need to be put in
relation to the number of nodes in the graph. An ACD of 50 is
high for a system with 100 elements but quite low for a system
with 1,000 elements.

Detecting and Breaking Cyclic Dependencies
Agreeing that it is a good idea to avoid cyclic compile-time
dependencies is one thing. Finding and breaking them is
another story.

Coupling Metrics
Another important goal of dependency management is to
minimize the overall coupling between different parts of
the software. Lower coupling means higher flexibility, better
testability, better maintainability and better comprehensibility.
Moreover, lower coupling also means that changes only affect
a smaller part of an application, which greatly reduces the
probability for regression bugs.

To control coupling, it is necessary to measure it. [LSD]
describes two useful coupling metrics. Average Component
Dependency (ACD) is telling us on how many components a
randomly picked component will depend upon on average
(including itself). Normalized Cumulative Component
Dependency (NCCD) is comparing the coupling of a
dependency graph (application) with the coupling of a
balanced binary tree.

LARGE-SCALE SYSTEM DESIGN

Dependency Management
The large-scale design of a software system is manifested
by its dependency structure. Only by explicitly managing
dependencies over the complete software lifecycle is it
possible to avoid the negative side effects of structural
erosion. One important aspect of dependency management
is to avoid cyclic compile-time dependencies between
software components:

You would probably agree that those symptoms affect most
non-trivial software systems in one way or another. Moreover,
the symptoms get more severe the older a system is and the
more people are working on it. The only way to avoid them in
the first place is to have a battle plan against structural erosion
integrated into the daily development process.

http://www.refcardz.com
http://www.dzone.com

4 Designing Quality Software: Architectural and Technical Best Practices

DZone, Inc. | www.dzone.com

	

	

Cyclic dependency resolved by adding an interface

Now, the class “AlarmHandler” simply implements the
interface defined in the “Model” component. The direction of
the dependency is inverted by replacing a “uses” dependency
with an inverted “implements” dependency. That is why this
technique is also called the “dependency inversion principle”,
first described by Robert C. Martin [ASD]. Now, it is possible
to compile, test and comprehend the “Model” component in
isolation. Moreover, it is possible to reuse the component by
just implementing the “IAlarmHandler” interface. Please note
that even if this method works pretty well most of the time,
the overuse of interfaces and callbacks can also have
undesirable side effects like added complexity. Therefore, the
next example shows another way to break cycles. In [LSD], you
will find several additional programming techniques to break
cyclic dependencies.

Hot
Tip

In C++, you can mimic interfaces by writing a class that contains
pure virtual functions only.

	

	

Sometimes, you can break cycles by rearranging features of
classes. The following diagram shows a typical case:

Another case of a cyclic dependency

The “Order” class references the “Customer” class. The
“Customer” class also references the “Order” class over
the return value of a convenience method “listOrders()”.
Since both classes are in different packages, this creates an
undesirable cyclic package dependency.

Problem solved by moving a method

The problem is solved by moving the convenience method to
the “Order” class (while converting it into a static method).
In situations like this, it is helpful to levelize the components
involved in the cycle. In the example, it is quite natural to
assume that an order is a higher-level object than a customer.
Orders need to know the customer, but customers do not need
orders. As soon as levels are established, you simply need
to cut all dependencies from lower-level objects to higher-
level objects. In our example, that is the dependency from
“Customer” to “Order”.

It is important to mention that we do not look at runtime
(dynamic) dependencies here. For the purpose of large-scale
system design, only compile-time (static) dependencies are
relevant.

The only real option to find them is to use a dependency
analysis tool. For Java, there is a simple free tool called
“JDepend” [JDP]. If your project is not very big, you can also
use the free “Community Edition” of “SonarJ” [SON], which
is much more powerful than JDepend. For bigger projects
you need to buy a commercial license of SonarJ. If you are not
using Java or look for more sophisticated features like cycle
visualization and breakup proposals, you will have to look at
commercial tools.

After having found a cyclic dependency, you have to decide
how to break it. Code refactorings can break any cyclic
compile-time dependency between components. The most
frequently used refactoring to do that is the addition of an
interface. The following example shows an undesirable cyclic
dependency between the “UI” component and the “Model”
component of an application:

Cyclic dependency between “UI” and “Model”

The example above shows a cyclic dependency between “UI”
and “Model”.Now it is not possible to compile, use, test or
understand the “Model” component without also having
access to the “UI” component. Note that even though there is
a cyclic dependency on the component level, there is no cyclic
dependency on the type level.

Adding the interface “IAlarmHander” to the “Model”
component solves the problem, as shown in the next diagram:

Hot
Tip

The usage of Inversion of Control (IOC) frameworks like the
Spring Framework [SPG] will make it much easier to avoid cyclic
dependencies and to reduce coupling.

Logical Architecture
Actively managing dependencies requires the definition
of a logical architecture for a software system. A logical
architecture groups the physical (programming language) level
elements like classes, interfaces or packages (directories or
name spaces in C# and C++) into higher-level architectural
artifacts like layers, subsystems or vertical slices.

A logical architecture defines those artifacts, the mapping of
physical elements (types, packages, etc.) to those artifacts
and the allowed and forbidden dependencies between the
architectural artifacts.

	

Example of a logical architecture with layers and slices

http://www.refcardz.com
http://www.dzone.com

5 Designing Quality Software: Architectural and Technical Best Practices

DZone, Inc. | www.dzone.com

Dangerous Attitude: “If it ain’t broken, don’t fix it!”
Critics of dependency and quality management usually
use the above statement to portray active dependency
and quality management as a waste of time and money.

Their argumentation is that there is no immediate benefit in spending time
and resources to fix rule violations just for improving the inner quality of an
application. It is hard to argue against that if you have a very short-time horizon.
But if you expand the time horizon to the lifetime of an application, technical
quality is the most important factor driving developer productivity and
maintenance cost. This shortsighted thinking is one of the major reasons why
so many medium- to large-scale applications are so hard to maintain. Many costly
project failures can also be clearly associated with lack of technical quality.

Hot
Tip

logical architecture that is reflected by the code, you can
combine architectural and security aspects by designating
architectural elements as safe or unsafe. “Safe” means that
no tainted data are allowed within this particular artifact.
“Unsafe” means that data flowing through the artifact is
potentially tainted. To make an element safe, you need to
ensure two things:
 • �The safe element should not call any API’s that return potentially

tainted data (IO, database access, HTTP session access etc.). If this
should be necessary for any reason all data returned by those API’s
must be validated.

 • �All entry points must be protected by data validation.

This is much easier to check and enforce (with a dependency
management tool) than having to assume that the whole code
base is potentially unsafe. The dependency management tool
plays an important role in ensuring the safety of an element by
verifying that all incoming dependencies only use the official
entry points. Incoming dependencies bypassing those entry
points would be marked as violations.

Of course, the actual data processing should only be done in
“safe” architectural elements. Typically, you would consider
the Web layer as “unsafe”, while the layers containing the
business logic should all be “safe” layers.

Since many applications are suffering from more or less
severe structural erosion, it is quite difficult to harden them
against potential security threats. In that case, you can either
try to reduce the structural erosion and create a “safe”
processing kernel using a dependency management tool or
rely on expensive commercial software security analysis tools
specialized on finding potential vulnerabilities. While the first
approach will cost you more time and effort in the short term,
it will pay off nicely by actually improving the maintainability
and security of the code. The second approach is more like a
short-term patch that does not resolve the underlying cause,
which is the structural erosion of the code base.

COMMON SENSE RULES

The best way to achieve a high level of technical quality is the
combination of a small set of rules and an automated-tool-
based approach to rule checking and enforcement (see rule T2
for recommendations. In general, the rules should be checked
automatically at least during the nightly build. If possible, a
rule checker should also be part of the developer environment,
so that developers can detect rule violations even before
committing changes to the VCS [SON].

The recommended set of rules is, therefore, minimalistic by
intention and can be customized when needed. Experience
shows that it is always a good idea to keep the number of rules
small because that makes it much easier to check and enforce
the rules in the development process. The more rules you add,
the less additional benefit will be provided by each additional
rule. The rule set presented here is based on common
sense and experience and already has been successfully
implemented by many software development teams.

Unfortunately this document does not leave enough space to
explain the rules in more detail. Please refer to the reference
section at the end for more information. Some of the rules
might seem arbitrary. In that case you can assume that they are
derived from common sense and best practices. And of course

Here is a list of architectural artifacts you can use to describe
the logical architecture of your application:

Layer You cut your application into horizontal slices (layers) by using technical
criteria. Typical layer names would be “User Interface”, “Service”, “DAO”,
etc.

Vertical slice While many applications use horizontal layering, most software architects
neglect the clear definition of vertical slices. Functional aspects should
determine the vertical organization of your application. Typical slice names
would be “Customer”, “Contract”, “Framework”, etc.

Subsystem A subsystem is the smallest of the architectural artifacts. It groups together
all types implementing a specific mostly technical functionality. Typical
subsystem names would be “Logging”, “Authentication”, etc. Subsystems
can be nested in layers and slices.

Natural
Subsystem

The intersection between a layer and a slice is called a natural subsystem.

Subproject Sometimes projects can be grouped into several inter-related subprojects.
Subprojects are useful to organize a large project on the highest level
of abstraction. It is recommended not to have more than seven to ten
subprojects in a project.

You can nest layers and slices, if necessary. However, for
reasons of simplicity, it is not recommended using more than
one level of nesting.

Mapping of code to architectural artifacts
To simplify code navigation and the mapping of physical
entities (types, classes, packages) to architectural artifacts, it
is highly recommended to use a strict naming convention for
packages (namespaces or directories in C++ or C#). A proven
best practice is to embed the name of architectural artifacts in
the package name.

For example, you could use the following naming convention:

com.company.project.[subproject].slice.layer.[subsystem]…

Parts in square brackets are optional. For subsystems not
belonging to any layer or slice, you can use:

com.company.project.[subproject].subsystem…

Of course, you need to adapt this naming convention if you
use nesting of layers or slices.

Application Security Aspects
Most people don’t think about the connection between
application security and the architecture (dependency
structure) of an application. But experience shows that
potential security vulnerabilities are much more frequent in
applications that suffer from structural erosion. The reason for
that is quite obvious: if the dependency structure is broken
and full of cycles, it is much harder to follow the flow of tainted
data (un-trusted data coming from the outside) inside of the
application. Therefore, it is also much harder to verify whether
or not these data have been properly validated before they are
being processed by the application.

On the other hand, if your application has a well-defined

http://www.refcardz.com
http://www.dzone.com

6 Designing Quality Software: Architectural and Technical Best Practices

DZone, Inc. | www.dzone.com

DESIGN RULES

These rules are covering large-scale architectural aspects of
the system.

Major Rules

D1: Define a cycle free logical architecture for your application
Only by having a well-defined and cycle-free application can you have a chance to
avoid structural erosion in the first place.

D2: Define a strict and clear naming convention for types and packages based on
your logical architecture
The naming convention also defines the mapping between your code and the logical
architecture and will greatly simplify the code navigation and comprehension. In C++
or C# you should replace package with namespace or directory.

D3: The code must respect the logical architecture
This rule is ideally enforced by a tool. Basically, the tool has to ensure that all
dependencies in your application conform to the logical architecture defined in D1.

D4: Package dependencies must not form cycles
The undesirable effects of cyclic dependencies have been discussed in detail before.

D5: NCCD of compilation units must not be bigger than 7
This rule corresponds with our goal to keep coupling small. If this value grows over the
threshold, you should isolate layers and subsystem by only letting them have interfaces
as entry points. Breaking cyclic dependencies can also shrink this metric considerably.

Minor Rules

D6: Keep security aspects in mind when creating a logical architecture
Plan for application security from the beginning. Designate “safe” and “unsafe” (data
are potentially tainted) architectural elements. Keep the boundary between safe and
unsafe elements as narrow as possible so that it is easy to verify that all incoming data
are validated properly.

D7: Separate technical aspects from domain aspects on the logical architecture level
Separating these two aspects is the most promising approach to maintain healthy
software. Technical aspects may shift in the near future. Business abstractions and their
related logic are more likely to be stable. The Spring Framework implements a very
good approach to separate business aspects from technical aspects [SPG].

D8: Use consistent handling of exceptions
Exception handling should be done in a consistent way by having answers for basic
questions like “What are exceptions?”, “What information about errors should be
written and where to?”. Low-level exceptions should not be visible in non-technical
layers. Instead, they should be semantically transposed corresponding to their level.
This can also prevent tight coupling to implementation details.

Guidlines

D9: Dependencies between compilation units must not form cycles
The dependencies must not form cycles. A general discussion is provided in [LSD].

D10: Use design patterns and architectural styles
Design patterns and architectural styles reuse proven and tested concepts. Design
patterns also establish a standardized language for common design situations.
Therefore, the use of design patterns is highly recommended where possible and
useful [DES].

D11: Do not reinvent the wheel
Use existing designs and implementations where possible. Sometimes it is not obvious
at first sight how many errors you can produce with your own implementation. Every line
of code not written is a criterion of quality of the system and makes maintenance easier.

PROGRAMMING RULES

Major Rules

P1: Use a consistent formatting and naming scheme
A consistent format for the source code contributes to readability and its
maintenance. It is recommended to use a tool that automatically formats source code.
Modern development environments support that out of the box. Classes, interfaces,
methods and so forth should follow a consistent naming scheme. Source code should
be readable on any platform; therefore, use spaces instead of tabs.

you are free to adjust thresholds and rules to better match
your specific environment.

Rules fall into three priority classes:

Major Rule Must always be followed.

Minor Rule It is highly recommended to follow this rule. If this is not possible or
desirable you must document the reason.

Guideline It is recommended to follow this rule.

TEST AND ENVIRONMENT RULES

Major Rules

T1: Use a version control system
This rule should speak for itself. It is impossible to write reliable software
without being able to track changes and synchronize changes.

T2: Set up a build server and measure rule compliance
Building your system should be possible completely and independently
from your IDE. For Java, we recommend the use of Maven, Ivy or ANT.
Integrate as many rule-checkers as possible into your build script, so
that the rules mentioned here can be checked completely automatically.
Structural checks have higher priority than other checks because
structural problems are much harder to repair once they spread over your
application. Ideally severe rule violations should break the build.

A popular recommendation for setting up an automated build
environment is the usage of the Hudson build server [HUD] together
with Sonar [SNR] and SonarJ [SON]. Hudson is programming language
agnostic while Sonar is currently expanding its support for other
languages. A free SonarJ plug-in is available for Sonar.

T3: Write unit tests together with your code
Additionally, make sure that all unit tests are at least executed during the
nightly build, ideally with every build. This way, you get early feedback
when changes lead to regression bugs. While executing the tests, test
tools usually also measure your test coverage. Make sure that all complex
parts of your application are covered by tests.

P2: Declare class and instance variables as private
All modifiable or non-primitive class and instance variables are to be defined as
private. This enhances the separation between interface and implementation [LSD].

Minor Rules

P3: Never catch “Throwable” or “Error” (Java)
To catch exceptions of type “Throwable” and “Error” (including subclasses) violates
the basic idea of the design of J2SE. Only provide exception handling for the type
Exception.

P4: Avoid empty catch blocks
Empty catch blocks inhibit a useful error handling. At a minimum, a comment and
perhaps a configurable log output is required in situations where it is uncritical if the
specified exception is caught. The system should remain in a legal state.

P5: Limit the access to types and methods
To declare all types and methods as public is easy but maybe not what you want. Only
make types and methods visible if they are supposed to be seen from the outside [LSD].

P6: Restrict extendibility - use final for types and methods (Java, C#)
The final keyword states that the class is not to be intended for sub-classing. In the
case of methods, it is clear that they should not be overwritten. By default, everything
should be final. Make everything final unless you explicitly want to allow overriding of
behavior by sub-classing.

P7: Provide a minimal documentation for types
Focus on the description of the responsibilities of types. If it is possible to easily and
precisely phrase the responsibilities, then this is a clear indicator for an adequate
abstraction. See also the “Single Responsibility Principle” [ASD].

P8: Number of types in a package must not exceed 50
Grouping types together with somehow related responsibilities helps maintaining a
clear physical structure. A package is a cohesive unit of physical design with an overall
responsibility. Overloaded packages have a good chance to cause excessive cycles in
the physical design.

P9: Lines of code (compilation unit) must not exceed 700
Large compilation units are hard to maintain. Furthermore, they often violate the idea
of clear abstractions and lead to significantly increased coupling.

P10: Number of method parameters must not exceed 7
A high number of method parameters may be an indicator of procedural design. The
pure number of possible parameter combinations may result in complex method
implementations.

P11: Cyclomatic Complexity must not exceed 20
The Cyclomatic Complexity (CCN) specifies the possible control paths through a
method. If a method has a lower CCN, it is easier to understand and to test. See
[CCN] for formal definition.

P12: Use assertions
Use “assert” (Debug.Assert for C#) in order to ensure preconditions, post-conditions
and invariants in the “Design by contract” style [TOS]. It is also important to verify
that assertions are never used to validate data coming from the user or from external
systems.

http://www.refcardz.com
http://www.dzone.com

7 Designing Quality Software: Architectural and Technical Best Practices

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Windows Azure Platform
ADO.NET

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

T4: Define tests based on the logical architecture
Test design should consider the overall logical architecture. The creation
of unit tests for all “Data Transfer Objects” instead of testing classes that
provide business logic is useless. A project should establish clear rules
on what has to be tested as a minimum instead of doing “blind” test
creation. Recommend rules are:
 • �Provide unit tests for all business related objects. We want to test the

business logic in isolation.
 • Provide unit tests for published interfaces.
The overall goal is to have good direct and indirect test coverage.

Minor Rules

T5: Use collaboration tools like issue trackers and wikis
Use an issue tracker to track problems and planned changes. Document
all major design concepts and abstractions of your application in a wiki.

CONCLUSION

If you are beginning a new project, work on an existing
project, or wanting to improve the development process in
your organization, this Refcard is meant to be a good starting
point. You can expect significant improvement with regard
to developer productivity, application maintainability and

technical quality, if you implement and enforce the majority of
the rules described above. Although this will cost you effort in
the beginning, the overall savings are much bigger than the
initial effort. Therefore, the adoption of design and quality
rules is not only “nice to have” but also mandatory for every
professional software development organization.

References
[ASD] �Agile Software Development, Robert C. Martin, Prentice Hall 2003

[AUP] Applying UML And Patterns, Craig Larman, Prentice Hall 2002

[LSD] Large-Scale C++ Software Design, John Lakos, Addison-Wesley 1996

[DES] �Design Patterns, Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Addison-Wesley 1994

[TOS] Testing Object-Oriented Systems, Beizer, Addison-Wesley 2000

[JDP] http://www.clarkware.com/software/JDepend.html

[SON] http://www.hello2morrow.com/products/sonarj

[SPG] http://www.springsource.org

[CCN] http://en.wikipedia.org/wiki/Cyclomatic_complexity

[HUD] http://hudson-ci.org

[SNR] http://www.sonarsource.org

Alexander von Zitzewitz is the founder, managing director of
hello2morrow GmbH and CEO of the US subsidiary. He has
more than 20 years of project and management experience.
In 1993 he founded ootec—a company focused on project
services around object-oriented software technology. During
this time, he worked as lead architect on several medium to
large C++ and Java projects. This company was sold to the
French Valtech group in March 2000 and is serving customers
like Siemens, BMW, Thyssen-Krupp-Stahl and other well-
known names in German industry. From 2003 to early 2005,
he was working as Director of Central Europe for a French
software vendor. In early 2005, he founded hello2morrow
in Germany with the vision to create a new product for
managing architecture and technical quality of software
systems written in Java. The first version of this product
called “SonarJ” was released in late summer 2005. Since
the summer of 2008, he has been living in Massachusetts.
His areas of expertise are object-oriented system design,
integrating technical quality into software development
processes and large-scale system architecture. Alexander
has a degree in Computer Science from the Technical
University of Munich.

Written by a software developer for software developers,
this book is a unique collection of the latest software
development methods. The author includes OOD, UML,
Design Patterns, Agile and XP methods with a detailed
description of a complete software design for reusable
programs in C++ and Java. Using a practical, problem-
solving approach, it shows how to develop an object-
oriented application—from the early stages of analysis,
through the low-level design and into the implementation.
Walks readers through the designer’s thoughts — showing
the errors, blind alleys, and creative insights that occur
throughout the software design process.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

