
Relaxed Coding of Quality Software

The Benefits of Static Code Analysis

About me

Java developer for 15 years

Working for hello2morrow

Sonargraph Architect (Java + SWT, Maven, Ant)

Jenkins Plugin

SonarQube Plugin

Sonargraph Explorer, Eclipse RCP

Interested in coding best practices

© 2015, hello2morrow GmbH 2

http://www.hello2morrow.com/products/sonargraph/architect
https://wiki.jenkins-ci.org/display/JENKINS/Sonargraph+Plugin
http://docs.codehaus.org/display/SONAR/Sonargraph+Plugin
http://www.hello2morrow.com/products/sonargraph/explorer

Questions to be answered

What is quality software?

Why are we not relaxed?

What can we do about it?

Why should we care?

© 2015, hello2morrow GmbH 3

Quality aspects

Functional, observed at runtime:

Functional correctness

Performance

Security

…

Non-functional, „embodied in the static structure of the software

system”:

*ilities: Maintainability, extensibility, testability, scalability,

modularity, …

See: http://en.wikipedia.org/wiki/Non-functional_requirement

© 2015, hello2morrow GmbH 4

http://en.wikipedia.org/wiki/Non-functional_requirement

Things adding stress to a developers life

Outside world

Unclear requirements

Deadlines

Evolution of frameworks,

changes in API

Changing team members

Changing priorities

Inside world

Complexity of code base, aka

„Spaghetti-Design“

Bad distribution of complexity

Bad test coverage

Bugs and potential bugs

Code duplication

Missing coding standards

© 2015, hello2morrow GmbH

No / too much / outdated / useless documentation

See: http://docs.sonarqube.org/display/SONAR/Developers%27+Seven+Deadly+Sins

5

http://docs.sonarqube.org/display/SONAR/Developers%27+Seven+Deadly+Sins

Complexity increase

© 2015, hello2morrow GmbH

Component A

Component B Component C

Component D Component E Component F

“It is the dependency architecture that is degrading,

and with it the ability of the software to be maintained.“ (Robert C. Martin)

6

Software Erosion – Symptoms

Immobility

Opacity

Fragility

Rigidity

Viscosity

(Robert C. Martin)

© 2015, hello2morrow GmbH 7

Get back into control…

© 2015, hello2morrow GmbH

“You can’t manage what you can’t control, and you can’t control what

you don’t measure” (Tom DeMarco)

9

What we can do about it

Improve our toolchain and use static code analysis to automatically

... monitor the complexity of the code base at macro level: Detect

architecture violations, cyclic dependencies between packages,

control overall coupling

... control the distribution of complexity at micro level: Control

cyclomatic complexity of methods, lines of code in source file,

number of parameters, etc.

... detect missing test coverage

... find bugs and potential bugs

... find code duplication

... check for violations of coding standards

© 2015, hello2morrow GmbH 10

11

Metrics for Coupling (John Lakos)

Depends upon:

The number a component directly and indirectly depends upon

(+1 for itself)

ACD (Average Component Dependency):

The sum of all depends upon values divided by the number of components

6

33

1 1 1

ACD = 15/6 = 2,5

3

11

2 3 2

Dependency Inversion

ACD = 12/6 = 2

6

66

1 6 1

Cycles

ACD = 26/6 = 4,33

© 2015, hello2morrow GmbH 11

Impact of cycles

© 2015, hello2morrow GmbH

Element A

Element B

Element C

Element A

Element B

Element C

1

2

3

Level

12

Example for Structural Quality

Spring 4.0.0
Consists of > 20 projects

359 packages, 4519 types

12 packages are involved in

cycles

3 package cycle groups

Biggest cycle group: 8

Packages

ACD: 27

NCCD: 4.4

© 2015, hello2morrow GmbH 13

Example for Structural Erosion I

ActiveMQ 5.5.1

122 packages, 2352 types

66 packages are involved in

cycles

4 package cycle groups

Biggest cycle group: 59

Packages

ACD: 395

NCCD: 41.2

© 2015, hello2morrow GmbH 14

Example for Structural Erosion II

Jenkins Core 1.512 62 packages, 2090 types

41 packages are involved in

cycles

1 package cycle group

Biggest cycle group: 41

Packages

ACD: 445

NCCD: 49.8

© 2015, hello2morrow GmbH 15

Example for Structural Erosion III

JDK 1.7 852 packages, ~ 19 500 types

681 packages are involved in

cycles

36 package cycle groups

Biggest cycle group: 346

Packages

ACD: 1097

NCCD: 92.9

© 2015, hello2morrow GmbH 16

Package Cycles over Time
Packages

%

ActiveMQ
Version

© 2015, hello2morrow GmbH 17

Structural Debt Index

This metric gives an idea for the required

effort to clean up the dependency structure.

Calculation:

Packages with more outgoing

dependencies are above packages with

more incoming dependencies

Packages that are part of package

cycle groups are sorted by calculating

the difference between outgoing and

incoming dependencies. Special rules

for draws.

All upward going dependencies are

considered bad

SDI = 10 * (type dependencies to cut) +

(code refs of dependencies to cut)

© 2015, hello2morrow GmbH
18

Structural Debt Index - Examples

Spring 4.0.0: 211

Active MQ 5.5.1: 8 564

Jenkins 1.512: 15 675

JDK 1.7: 604 144

© 2015, hello2morrow GmbH 19

How to get out?

© 2015, hello2morrow GmbH
20

Refactoring example I

© 2015, hello2morrow GmbH
21

Dependency inversion

© 2015, hello2morrow GmbH 22

Control complexity at the micro level (class)

Useful metrics to avoid large complex classes and methods:

Class level: LOC, number of methods, LCOM4

Method level: LOC, number of parameters, cyclomatic

complexity

Findbugs, PMD, Checkstyle help to find defects at this level.

© 2015, hello2morrow GmbH 23

“How to draw the architecture of your system”

http://geekandpoke.typepad.com/.a/6a00d8341d3df553ef016764fffd81970b-pi

We need abstractions to understand and solve complex problems!

© 2015, hello2morrow GmbH 24

Control complexity at the macro level

(architecture)

© 2015, hello2morrow GmbH

 Functionality

 Structure

 Modularity

 Simplicity

 Quality

Architecture is the fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design and

evolution. [IEEE 1471]

25

26

Presentation

Domain

Persistence

Define an Architecture Blueprint

 Step 1: Divide horizontally into layers by technical aspects

 Step 2: Divide vertically into slices by domain driven aspects

C
o
n

tr
a

c
t

C
u

s
to

m
e

r

U
s
e
r

C
o
m

m
o

n

 Step 3: Define dependencies

Software System

 Step 4: Connect source code to the architecture

© 2015, hello2morrow GmbH 26

Best practices

On existing projects, start with a small metric set

Be patient and get management on board: Improvements won‘t

happen automatically but need hard work

Track your progress

Metrics are NOT the solution, but only a vehicle to pin down

potential problems. Don‘t optimize for metric values only!

Reflection beats static analysis -> control its usage

Static analysis is not the right method to find memory leaks and

other performance problems

Remember:„A fool with a tool is still a fool“

© 2015, hello2morrow GmbH 27

Integration into the workflow

© 2015, hello2morrow GmbH

BUILD

DEVELOPER

TASK MANAGEMENTMETRIC HISTORY

Version
Control
System

ARCHITECT

Reports CI Server

28

Quick demo

© 2015, hello2morrow GmbH 29

Why we should care

Barry M. Horowitz, DoD Study

© 2015, hello2morrow GmbH 30

Further info

i.kellner@hello2morrow.com

Twitter: @i_kellner

Whitepapers, DZone RefCard, etc. on our web page:

http://www.hello2morrow.com

Blog: http://blog.hello2morrow.com

References
Applying UML And Patterns, Craig Larman, Prentice Hall 2000

Agile Software Development, Robert C. Martin, Prentice Hall 2003

Large-Scale C++ Software Design, John Lakos, Addison-Wesley 1996

Design Patterns, Gamma et al., Addison-Wesley 1994

Controlling Software Projects: Management, Measurement, and Estimates, Tom DeMarco, Prentice Hall,

1982

The Mythtical Man Month, Frederick P. Brooks, Addison-Wesley, 1975, 1995

The Pragmatic Programmer: From Journeyman to Master, Andrew Hunt, David Thomas, Addison-Wesley,

1999

Copy & Paste & Bug, Dr. Elmar Jürgens, http://entwicklertag.de/2012/vortraege/copy-paste-bug

http://www.agilearchitect.org

© 2015, hello2morrow GmbH 31

mailto:i.kellner@hello2morrow.com
https://twitter.com/i_kellner
http://www.hello2morrow.com/
http://blog.hello2morrow.com/

Sonargraph Eclipse Integration into Source

Editor

© 2015, hello2morrow GmbH 32

Sonargraph Jenkins CI Build Server Plugin

© 2015, hello2morrow GmbH 33

Sonargraph SonarQube Plugin (Web Interface)

© 2015, hello2morrow GmbH 34

Sonargraph Explorer: Extensible Analysis

Groovy Script

def NodeAccess node = result.addNode("Synchronized")

IJavaVisitor v = javaAccess.createVisitor()

v.onMethod {

JavaMethodAccess method ->

if (method.isSynchronized()) {

result.addElement(method)

result.addNode(node, method)

}

v.visitChildren(method)

}

javaAccess.visitParserModel(v)

Create Metrics, Issues, etc.

© 2015, hello2morrow GmbH
35

Some of our more than 200 customers

© 2015, hello2morrow GmbH 36

